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Abstract

Modern forensic analytics applications, like network traffic analysis, perform high-performance hypothesis testing, knowledge discovery and data mining on very
large datasets. One essential strategy to reduce the time required for these operations is to select only the most relevant data records for a given computation. In this
paper, we present a set of parallel algorithms that demonstrate how an efficient selection mechanism – bitmap indexing – significantly speeds up a common analysis
task, namely, computing conditional histogram on very large datasets. We present a thorough study of the performance characteristics of the parallel conditional
histogram algorithms. As a case study, we compute conditional histograms for detecting distributed scans hidden in a dataset consisting of approximately 2.5
billion network connection records. We show that these conditional histograms can be computed on interactive time scale (i.e., in seconds). We also show how to
progressively modify the selection criteria to narrow the analysis and find the sources of the distributed scans.
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1 Introduction
A typical day’s worth of network traffic at an “average” government research laboratory may consist of tens of millions of connections
comprising multiple gigabytes worth of connection records. These connection records can be considered as “conversations” between two hosts
on a network. They are generated by routers, traffic analyzers or security systems, and contain information such as source and destination
IP addresses, source and destination ports, duration of connection, number of bytes exchanged and so forth. A year’s worth of such data
currently requires on the order of tens of terabytes or more of storage. According to Burrescia [Burrescia and Johnston 2005], traffic volume
over ESnet, a production network servicing the U. S. Department of Energy’s research laboratories, has been increasing by an order of
magnitude every 46 months since 1990. This trend is expected to continue into the foreseeable future.

The steady increase in network traffic volume exacerbates the difficulty of forensic cybersecurity and network performance analysis. Current
network traffic analysis toolsets often rely on simple utilities like grep, awk and gnuplot. While sufficient for analyzing small amounts of
network traffic data, these utilities do not scale nor perform to the level needed for analyzing current or future levels of network traffic.
To address the need for rapid forensic analysis capabilities, our work presents advances in two complementary technology areas, namely
scientific data management and visual analytics.

Interactive network traffic data analysis is often based on histogram methods. One key feature distinguishing histograms in data mining
applications from other types of applications [Ioannidis 2003] is the use of ad-hoc conditions to reduce the number of data records being
analyzed. For example, to identify unusual activities on TCP ports, we may compute a histogram over destination ports and time to discover
high or unusual levels of activity on a particular port. However, rather than computing a histogram over all data records, we might restrict the
computation to those network sessions to a set of criteria like those that originate from a specific IP address or address range. The restriction
on originating IP or other conditions is referred to an external condition. Analyses of data records subject to such external conditions are
commonly known as conditional analyses. Our objective here is to develop efficient algorithms for a special type of conditional analysis, i.e.,
computing multi-variate histograms under arbitrary external conditions. We call this type of histogram conditional histogram.

The main contributions of this paper are as follows:

• We build upon recent previous work that combines state-of-the-art indexing with a novel approach to visual analytics [Bethel et al.
2006]. In this paper we introduce a new family of parallel algorithms for efficiently building 2D conditional histograms. The key
feature of these parallel algorithms is that they operate on bitmap indices for evaluating the external conditions to efficiently populate
histogram bins.

• We present a detailed performance analysis of these conditional histogramming algorithms on a 32-way parallel SMP platform. We
show that this work helps accelerate the most data-intensive and time-consuming part of forensic analysis, namely data mining and
knowledge discovery based upon multi-dimensional queries.
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• We apply the rapid conditional histogramming technology in conjunction with a specialized visual analytics application for detecting
and analyzing distributed scans. The data for this case study covers a 42-week period at a US government science laboratory. The case
study and its forensic analysis would not be possible without the combination of technologies from scientific data management and
visual analytics.

2 Previous Work
Our work is based on a multi-disciplinary approach of techniques in network traffic analysis, efficient querying and indexing, and query-driven
visualization. In this section we give a brief overview of the related work in these areas.

2.1 Network Traffic Analysis and Visualization

A network connection can be thought of as a set of packets passing between two hosts within a given time interval that have common
characteristics. An example of a network connection is a single communication session or an interaction between two hosts on the Internet.
Several standard tools exist for capturing network connection data. For larger environments, routers and switches can provide connection
data in specialized formats such as NetFlow [Systems 2005] or SFlow [Phaal et al. 2001]. Another tool for analyzing network connection
data is Bro IDS [Paxson 1998]. Bro can output connection records, which are slightly different than traditional flow records, but that contain
substantially the same information. Other systems generate a single full-duplex connection record that also contains byte and packet counts
for the reverse direction [Uphoff and Criscuolo 2004].

For network connection data analysis, the special purpose systems and software provided by network equipment vendors for analyzing
NetFlow and SFlow records are typically optimized for aggregate network usage and trend analysis rather than forensic analysis. Freely
available tools are typically architected as a collection of command-line utilities for collecting, concatenating, filtering, and summarizing
network connection data. Fullmer’s OSU Flow-Tools [Fullmer and Romig 2000] is a good example of such a collection that is best suited
for small-scale analysis. Plonka’s FlowScan suite [Plonka 2000] consists of a collection of perl scripts and modules that provide stateful flow
inspection and charting/graphing capabilities. Both these utilities store data in flat files in a binary format (FlowScan uses a compressed binary
format). Both use a sequential scan through data to accomplish filtering operations. Gates’ SiLK Suite [Gates et al. 2004] is a collection
of software utilities for flow data collection and analysis suite that uses a reduced-size flow record in conjunction with data compression
and file/directory hierarchies to maximize filtering performance and minimize data footprint size on disk. SiLK uses bitmaps to accelerate
filtering operations based upon IP address, but does not use bitmap indexing or any other form of indexing structure, other than a tree-like
directory and file hierarchy, to accelerate query operations.

Intrusion Detection Systems (IDS) like Bro are typically good at analyzing events that are closely correlated in time where analysis can
rapidly yield actionable results. However, over large time scales and/or very large data sets, the design decisions that make IDS software
appropriate for rapid response limit applicability to problems of scale. Typical failure modes include unbounded memory consumption or
computational overload that inhibits a rapid response.

Traditional high volume network traffic analysis usually begins after the IDS provides an alert, such as when one or more IP addresses are
associated with a possible attack. The tool most typically used for searching text-format connection records is grep. Search results post-
processing is typically performed with tools such as perl, shell scripts and gnuplot. These tools work well for analyzing moderate amounts of
network traffic data. However, they do not scale up to terascale data sizes.

Previous work on network traffic visualization has focused on filtering and visual presentation of different types of network traffic data,
including connection data, routing information, IDS alerts and so forth.

One of the most widely deployed tools for visualizing network traffic levels and statistics is MRTG [Oetiker 2006a], which relies on RRDtool
[Oetiker 2006b] for charting and graphing. These tools are in use at nearly all sites that run production networks for the purpose of showing
traffic levels at multiple temporal resolutions. One shortcoming of RRDtool is that detail in data temporally distant from the present is lost
due to its being summarized and averaged in the round-robin database.

More recently, [Lau 2004; McPherson et al. 2004; Lakkaraju et al. 2004] describe applications that map network connection variables to
axes, then present activity, or lack thereof, at the appropriate grid location (a form of histogram). The basic idea is to facilitate rapid visual
discovery of features, patterns or activity in network traffic or network connection data. Other applications use a linked node concept to
convey the presence of traffic or traffic levels between addresses mapped to a grid [McPherson et al. 2004; Yin et al. 2004; Goodall et al.
2005], to geographic locations or some other representation of network topology [Cox et al. 1996; Koutsofios et al. 1999], or to a task-
oriented metaphorical representation of internal and external networks [Fisk et al. 2003; Livnat et al. 2005; Goodall et al. 2005]. Several other
applications focus on visualization of IDS alerts [Komlodi et al. 2005; Livnat et al. 2005]. Within this constellation of previous visualization
research, the work we describe here focuses on the interactive drill-down to first compute then display network connection statistics using
histograms that show levels of activity satisfying user-defined query conditions to implement knowledge discovery and hypothesis testing on
large collections of network connection data.

While these previous works in network traffic visualization have produced novel and useful presentation and interaction techniques, they were
tested using small amounts of network data. In contrast, our work focuses on techniques suitable for use with large collections of network
connection data. Our “filtering” is implemented by efficient compressed bitmap indices designed for rapid data mining of realistic-sized
datasets.

2.2 Indexing and Querying

To search quickly through large amounts of network connection data, we use bitmap indices [O’Neil 1987; Chan and Ioannidis 1998; Johnson
1999; Shoshani et al. 1999; Stockinger et al. 2000], an indexing structure optimized for read-only data. Bitmap indices are well suited for



use in indexing and querying network connection data, which is typically not modified once stored. Bitmap indexing has been implemented
in many commercial database systems. Its efficiency is well accepted for low cardinality attributes. We recently showed that bitmap indices
are also efficient with high cardinality attributes by using Word Aligned Hybrid coding (WAH) [Wu et al. 2004]. FastBit [Scientific Data
Management Group 2006] is a research code that implements a number of different forms of bitmap index compression, including WAH.

Network analysts usually explore network connection data iteratively and in an ad-hoc manner, i.e. the queries often do not follow a predefined
pattern. Moreover, queries are often complex and contain several attributes (dimensions) like “Find all network connection records where
StartTime > 20050501 AND 10.102.0.0 <= SourceIP <= 10.105.255.255.” Bitmap indices have a unique advantage over traditional tree-
based indices for these kind of multi-dimensional queries since the dimensions can efficiently be combined without suffering from the “curse
of dimensionality” [Bellman 1961].

2.3 Query-Driven Visualization

As data grows larger and more complex, building and using larger and more scalable visualization systems simply produces a greater amount
of output, which in turn increases cognitive load on the viewer without any explicit guarantee of an increase in potential or actual insight.
The goal of Query-Driven Visualization is to limit visualization processing and subsequent visual interpretation to data that is deemed to be
“interesting.”

Within the context of network traffic visualization and analysis, many previous works include some notion of “data filtering” as part of their
knowledge discovery process. The OSU Flow-Tools [Fullmer and Romig 2000], FlowScan [Plonka 2000] and SiLK [Gates et al. 2004] all
have command-line interfaces to filtering utilities that find records matching a set of criteria. Filtering selection criteria include connection
record variable values like source or destination IP or port number, IP protocol, interface number, and autonomous system number. For most
of these systems, filtering is performed using a sequential scan through flat files. The computational complexity of such an approach is O(n)
where n is the number of connection records. SiLK uses a tree-like directory and file hierarchy to partition data to accelerate searches.

Swift-3D [Koutsofios et al. 1999] is an integrated data visualization and exploration system. It supports C-style query expressions that are
translated into C code, compiled into shared objects and dynamically linked into the application. This approach offers flexibility similar to
that of awk and sed but with the speed of compiled code. This particular work achieves high performance by using Direct-IO to bypass
the kernel, but does not appear to use any form of indexing to accelerate the search process. This approach is also O(n) in computational
complexity with respect to data size.

The VisDB system combines a guided query-formulation facility with relevance-based visualization [Keim and Kriegel 1994]. Each data item
in a dataset is ranked in terms of its relevance to a query, and the top quartile of results is then input to a visualization and rendering pipeline.
Data is presented in a way to cluster more relevant items closer together, and less relevant items further apart. It is especially well-suited to
display the results of “fuzzy queries” in that inexact matches are ranked and visually displayed in a way to convey relevance. This approach
results in O(n) complexity.

The TimeFinder system described in [Hochheiser and Shneiderman 2001] supports interactive exploration of time-varying data sets by
providing the ability to quickly construct queries, modify parameters, and visualize query results. The query results are presented in a fashion
that implements a form of data mining – more detailed information about the items satisfying the query are presented in a separate window.
TimeFinder reads all data into memory and is therefore able to operate on only modest-sized datasets. Again, the complexity of this filtering
approach is O(n).

2.4 Our Contribution

The notion of coupling visualization with high performance index/query technology was introduced in [Stockinger et al. 2005b]. We showed
that the computational complexity of visualization processing can be constrained to the number of items returned by a query. As such, that
approach is the most suitable for use in query-driven visualization and analysis of very large multi-dimensional datasets. Those principles
were subsequently applied to rapid network traffic analysis in [Bethel et al. 2006].

The work we present in this paper extends that of both [Stockinger et al. 2005b; Bethel et al. 2006] in two key ways. First, the iterative
data mining queries rely on a new family of parallel algorithms for building two-dimensional conditional histograms. We study the design
and implementation of these novel parallel algorithms and provide a detailed performance characterization. Second, we apply these new
histogramming algorithms to a 42-week collection of network connection data to detect and characterize distributed scans.

3 Parallel Conditional Histogram Algorithms
In our previous work [Bethel et al. 2006] we used a simple parallelization strategy for building conditional histograms. In this paper we
introduce three parallelization strategies for building conditional histograms that offer significantly improved performance compared to our
initial algorithm. These new algorithms achieve better performance by eliminating redundant work and leveraging the regular structure of the
histograms to streamline the process of computing histogram bin values. One key idea of these novel algorithms is to use automatic task or
data parallelism for populating histogram bins.

First, we provide a running example for motivating the problem of conditional histograms. Then we discuss the initial parallelization strategy
that we used in [Bethel et al. 2006]. Next, we provide a detailed description of the three novel parallelization algorithms for building 2D
conditional histograms.

3.1 Running Example

To simplify the description of the algorithms, we use an example where we compute a simple two-dimensional (2D) histogram. Assume that
each histogram dimension (variable) is binned separately. Further, assume that the overall histogram is defined on bins formed by the cross



Algorithm Explanation
BAQ Bin-A-Query: use a query to count the

number of records in a bin
LAQ Line-A-Query: use a query to filter

the right data for a column of the
multi-dimensional histogram

RAQ Rectangle-A-Query: use a query to filter the
right data for a rectangular subset of the
multi-dimensional histogram

FEP Filter-External-Partitions:
- filter the externally partitioned records
- count each partition separately
- accumulate the results

Table 1: A summary of the conditional histogram algorithms.

product of the two one-dimensional bins. We denote the two variables as A and B. Next, we denote the number of bins for A as nA and the
number of bins for B as nB. Finally, the histogram is built by computing the number of records that fall in each of the nAnB bins.

The following is a specific 2D histogram example that we will use throughout this section.

histogram DP:5000:6000:125, tsyday:127:183:7
where (state == 1) and (12 <= tshour < 14)

The given example contains a bin specification in the first line and a set of external conditions in the second line. The bin specification is
defined by the triple < lowerBinBoundary : upperBinBoundery : binWidth >. In this example, the lower bin boundary for the
variable DP is 5000, the upper bin boundary is 6000 and the bin width of 125. Hence, the total number of bins for variable DP is 8. Similarly,
the bin boundaries for variable tsday are 127 and 183, respectively. The bin width is 7. Again, the total number of bins for variable tsday
is 8.

3.2 Details of the Parallel Algorithms

First, we revise the original conditional histogramming algorithm in our previous work [Bethel et al. 2006]. Next, we provide a detailed
description of three novel conditional algorithms. The names of these algorithms and their brief descriptions are given in Table 1.

In the discussion that follows, we are addressing task and data decomposition alternatives for each of the four algorithms. The software
performs automatic parallelization on behalf of the calling application and significantly affects the overall performance. With respect to
automatic parallelization, each of these algorithms will partition the data or tasks for the running example query in different ways. One of the
algorithms, BAQ, can compute histograms using only the query capability of FastBit. The other three algorithms – LAQ, RAQ, FEP – use
a combination of FastBit query capabilites to first select a set of records appropriate for a particular data decomposition, then use a second-
phase algorithm to compute histogram subsets using raw data records. We take such an approach for the LAQ, RAQ and FEP algorithms after
having observed substantial processing time in BAQ that appears to be due to redundant work associated with query processing.

The BAQ, LAQ and RAQ algorithms are all task parallel, while the FEP algorithm is data parallel. In the task parallel family of algorithms,
each PE will fill a histogram bin or bin range; each PE will operate on the complete dataset to complete its work task. In the data parallel
algorithm, each PE is computing all histogram bins on a subset of the data.

For the task parallel algorithms, we store each variable’s raw data in a separate file. Additionally, each variable’s bitmap index is also stored
in a separate file. If there are V variables, then there would be 2V files. For the data parallel algorithm, each variable’s raw data and associated
bitmap indices are stored in p separate files where p is the number of PEs. Each of the p data files contains approximately the same amount
of data. Therefore, if there are V variables and p PEs, there are a total of 2V p files. Our performance experiments are conducted on an SMP
platform so all PEs have access to a single, fast filesystem.

3.2.1 Algorithm Bin-A-Query (BAQ)

The BAQ algorithm uses only the query capability of FastBit to compute histograms. It builds a query for each bin to count the number of
records that fall in the bin. Take the above example of filling a 8x8 histogram for DP and tsyday. The conditions for each query are the
combination of the external conditions and the boundaries of the bins. For example, the first bin would have DP in the range of 5000 and
5125, and tsyday in the range of 127 and 134. The query to fill the first bin would be:

select count(*) where
(state == 1) and (12 <= tshour < 14) and
(5000 <= DP < 5125) and (127 <= tsyday < 134).

Similarly, for a bin with DP between 5125 and 5250 and tsyday between 134 and 141, the query would be:

select count(*) where
(state == 1) and (12 <= tshour < 14) and
(5125 <= DP < 5250) and (134 <= tsyday < 141).



Figure 1: A schematic diagram depicting how algorithms BAQ and LAQ compute a 2D conditional histogram.

In this case, a total of 64 queries are executed to compute an 8x8 histogram. If we a assume a parallel computer with 4 PEs, each PE executes
16 queries as illustrated in Figure 1(a). Since these queries can be executed independently, this algorithm is easily parallelized.

However, one inefficiency we see in this approach is that it executes an excessive number of FastBit queries: Since each query evaluates the
external conditions ((state == 1) and (12 <= tshour < 14)) independently, this approach performs redundant work and could thus
be inefficient. The remaining algorithms – LAQ, RAQ and FEP – can be viewed as alternative strategies to reduce these repeated evaluations
of the external conditions.

3.2.2 Algorithm Line-A-Query (LAQ)

The LAQ algorithm uses a filtering capability to compute the histogram with less queries than BAQ. In essence, LAQ slices a multi-
dimensional histogram into many 1D histograms. The basic idea of LAQ is as follows: (1) use FastBit to find the records for all bins in
a 1D “slice” of a 2D histogram and (2) implement a counting function for populating the respective bins.

Assuming that we choose to slice the above 2D histogram along DP (see Figure 1(b)), the queries we use will select tsyday as output. This
will lead to 8 queries of the form:

select tsyday where
(state == 1) and (12 <= tshour < 14) and
(5000 <= DP < 5125) and (127 <= tsyday < 183).

select tsyday where
(state == 1) and (12 <= tshour < 14) and
(5125 <= DP < 5250) and (127 <= tsyday < 183).

...

In contrast to algorithm BAQ, LAQ needs to read part of the raw data records in addition to reading the bitmap index. Because of this
additional access to raw data, we expect each LAQ query could take more time than would be required in a BAQ approach. However, because
the LAQ algorithm executes less queries overall, it is possible it may perform better than BAQ. We discuss this issue in more detail in Section
4.

After LAQ first uses FastBit to select the set of records that fall within its 1D “slice,” it must next invoke its counting function to compute
all histogram bin values within the slice. The bulk of computation in this function is to locate the right bin for each record and increment the
bin’s count. If the bins for tsyday are arbitrarily defined, we may need to use O(log(b)) time to place each record to the right bin, where
b denotes the number of bins. However, for bins specified with the triple < lowerBinBoundary : upperBinBoundery : binWidth
>, LAQ uses a simple computation to determine in which bin a record falls. In this case, the time needed to determine the bin for any data
record is considered to be constant since it does not depend on the number of bins, and the time required to compute the 1D histogram is
proportional to the number of records FastBit selects for the 1D slice.

3.2.3 Algorithm Rectangle-A-Query (RAQ)

As in algorithm LAQ, RAQ first uses a FastBit query to filter a subset of records and then uses a counting function to populate a subset of
bins of the final histogram. Whereas LAQ partitions the 2D histogram task space into 1D histogram slices, RAQ partitions the task space into
“tiles” or “rectangles” of smaller 2D histograms. RAQ partitions the task space into as many rectangles as there are PEs (see Figure 2(a)). In
the implementation we present here, our partitioning strategy aims to have all partitioned rectangles have the same number of bins to evenly
divide the tasks amongst PEs. Other 2D partitioning schemes could result in better load balance.

Assuming we are computing the above histogram on 4 PEs, we could partition the 64 bins into 4 rectangles of 16 bins each, e.g., “5000
<= DP < 5500 and 127 <= tsyday < 155,” “5000 <= DP < 5500 and 155 <= tsyday < 183,” “5500 <= DP < 6000 and 127
<= tsyday < 155,” and “5500 <= DP < 6000 and 155 <= tsyday < 183.” The query for filtering the records that fall in the first
rectangle is:



Figure 2: A schematic diagram depicting how algorithms RAQ and FEP compute a 2D conditional histogram.

select DP, tsyday where
(state == 1) and (12 <= tshour < 14) and
(5000 <= DP < 5500) and (127 <= tsyday < 155).

The counting function to fill a multi-dimensional histogram needs to place the incoming records into appropriate bins. Let us assume that
2D bins are a cross product of bins for each 1D variable. Thus, by determining in which 1D bin each variable falls, one can also determine
in which 2D bin a record falls. Given the bins are specified using the triple < lowerBinBoundary : upperBinBoundery : binWidth
>, the time required by this basic histogram function is proportional to the number of records selected for each 2D rectangle.

3.2.4 Algorithm Filter-External-Partitions (FEP)

An alternative to dividing the task according to the histogram bins is to divide the data records among the PEs (see Figure 2(b)). In the data
parallel approach, each PE computes all histogram bins for a subset of n/p data records, where n is the total number of data records and p is
the number of PEs. Finally all histogram computations are combined with the final result.

In FEP, each PE executes a FastBit query to first filter the records from a different data partition and then computes a set of partial counts
for every bin. A final step accumulates all the partial counts for every bin from all PEs (result aggregation). Since this final step is relatively
simple, we would expect this approach to parallelize well. Here, the external conditions are evaluated on each PE, but on different subsets of
records. Therefore, there is no redundant evaluation of the external conditions with respect to a given partition of data. All PEs use the same
query to filter the data records. In our example, the query is as follows:

select DP, tsyday where
(state == 1) and (12 <= tshour < 14) and
(5000 <= DP < 6000) and (127 <= tsyday < 183).

FEP uses the same counting function is an algorithm RAQ to fill the arrays of partial counts on each PE. The total cost of this counting
function is proportional to the number of records selected.

4 Run-Time Complexity
In this section we discuss the run-time complexity of the four parallel algorithms BAQ, LAQ, RAQ and FEP for building conditional his-
tograms. Let us briefly summarize the key ideas of the four parallel algorithms before we proceed with an in-depth analysis.

In Section 3 we showed that BAQ computes histograms using only the query capability of FastBit. The other three algorithms – LAQ, RAQ,
FEP – use a combination of FastBit query capabilites to first select a set of records appropriate for a particular data decomposition (record
selection), then use a second-phase algorithm to compute histogram subsets using raw data records (record counting).

We start our discussion with the algorithmic phase that is common to all four algorithms. Then we will discuss the remaining algorithmic
phases for LAQ, RAQ and FEP. The main thesis motivating our development of these algorithms is:

• The cost of performing redundant queries for computing conditional histograms exceeds the cost of eliminating redundant queries by
using FastBit queries to evaluate external conditions and then compute the records that fall into particular histogram bins.

4.1 Evaluate Query Conditions

From earlier analysis and timing measurements [Wu et al. 2004; Wu et al. 2006], we know that the average query processing time is propor-
tional to the size of the bitmap indices. Since all queries in algorithm BAQ involve the same set of attributes, we would expect the total time
to be proportional to the number of bins in the histogram. For a typical 2D conditional histogram containing 100×100 bins, there are plenty
of queries for a moderate size parallel system to ensure that each PE executes about the same number of queries (query load balancing).

In terms of number of queries, algorithm BAQ evaluates nAnB queries, LAQ evaluates nA (or nB) queries, RAQ evaluates p queries (where p
is the number of PEs), and FEP evaluates 1 query (distributed onto to p PEs). On a moderate size parallel machine where nA > p, we would
expect BAQ to use more time for processing queries than LAQ; LAQ to use more time than RAQ; and RAQ to use more time than FEP.



4.2 Record Selection
After algorithms LAQ, RAQ and FEP first use FastBit to select a set of records that match the filtering criteria, each must next read records
from disk and then compute histogram bins. In this section, we examine issues that may affect performance for our two different partitioning
strategies.

For our shared-memory implementation of the task-parallel algorithms (BAQ, RAQ and LAQ), all PEs access the same set of files, even
though each PE reads a different set of record values. Because RAQ and LAQ read records from the same set of files, it is likely that some of
the records read by different PEs will reside in the same pages on disk. Since all disk I/O operations are performed in pages internally, these
pages would be read multiple times to satisfy the read operations issued from different PEs. When using more than one PE, LAQ and RAQ
may require more time to read the same set of record values than algorithm FEP due to redundant disk page I/O.

Let us compare the read operations performed by LAQ and RAQ for building d-dimensional conditional histograms. The first difference is
that LAQ reads the data records of only one variable while RAQ reads d variables. This fact suggests that LAQ could spend less time reading
its data records. However, because the record values are randomly selected from data files, the reading order may have a substantial influence
on the actual execution time. When reading the same variable, algorithms LAQ and RAQ could read the same record values. However, each
algorithm performs these reads in a different order through a different number of queries. In general, reading these record values in a smaller
number of queries will take less time than reading them a larger number of queries. In order to read the selected record values, LAQ executes a
total of nA (or nB) such queries while RAQ only executes p queries. In this performance study we assume nA > p. Thus, we expect algorithm
RAQ to use less time to the read selected record values than algorithm LAQ.

For most conditional histograms we expect that the selected records are randomly scattered throughout the dataset. In this case, algorithm
RAQ would show relatively small changes as the number of PEs p increases for the following reasons: (1) Since all PEs perform the same
evaluation of external conditions, this part of the query time is unlikely to reduce as the number of PEs increases. (2) Likewise, the I/O time
for retrieving the records might also not change significantly due to I/O contention of simultaneous disk page accesses. In contrast, the query
response time for LAQ would decrease as each PE works on fewer number of 1D histograms. On a single PE, we may see LAQ to take longer
than RAQ, but as the number of PEs increases, LAQ may catch up with RAQ.

With the data parallel algorithm (FEP), there are no issues with respect to read contention or redundancy since all PEs are reading different
data from different files.

4.3 Record Counting
Finally we discuss the time required for counting the number of records per bin. Remember that the total number of records to be counted for
a conditional histogram is defined by the external conditions, and is the same for all algorithms. The procedure used to locate the bin for each
record value is also the same. The time required for the counting functions after the variables have been read into memory is proportional
to the number of records and the number of variables. LAQ, RAQ and FEP work on the same total number of records. However, LAQ only
selects and counts one variable while RAQ and FEP select and count two variables in our example. We expect that RAQ and FEP would
spend nearly twice as much time as LAQ on the counting functions. However, because the counting functions operate on in-memory data,
the total time spent in these functions may be relatively small.

In summary, we expect algorithm BAQ to be the slowest because it performs considerable amount of redundant work. We expect algorithm
RAQ to be the fastest on a single PE, and algorithm FEP to be the fastest on multiple PEs.

5 Performance Study
In this section we evaluate the performance of four parallel algorithms for building conditional histograms. All experiments were executed
on a 32-processor SGI Altix with 192GB of RAM and 40TB of fiberchannel RAID. Because of its large amount of memory and substantial
I/O performance rates, this platform is well suited for data intensive analysis and visualization tasks.

5.1 Data Characteristics
The data set consists of 42 weeks’ worth of network connection data that was collected by Bro [Paxson 1998] at NERSC (National Energy
Research Scientific Computing Center, Berkeley Lab). There are 2.5 billion records, each with 22 attributes such as source and destination
IP addresses, source and destination ports, start time, duration, number of bytes sent along with additional network connection information.
All the data is stored in raw binary format. This data set is more than two times the size that we used for our initial experiments for the SC05
HPC Analytics Challenge [Stockinger et al. 2005a]. In order to increase query efficiency, we have split IP addresses into their historical A,
B, C and D octets. The total size of the data set is 281GB.

Figure 3 shows the network traffic that was collected at NERSC between August 2004 and June 2005. We can see a significant traffic increase
before Supercomputing 2004.

For each of the 22 attributes we built an equality-encoded bitmap index with WAH bitmap compression [Wu et al. 2004]. The size of the
bitmap indices is 78.6GB, which is less than a third of the raw data. This size is fairly modest compared with B-tree-based indices, which are
on average three to four times the size of the raw data.

For our benchmarks we experimented with two different kinds of data partitioning strategies. First, we stored the values of each attribute in a
single large file. In total, we have 22 files (one file per attribute). We call this case the contiguous data set. Next, we divide the data into 32
partitions (one per PE), where each partition consists of about the same number of data records (partitioned data set).

Figure 4 shows the total sizes of the WAH compressed bitmap indices for the 32 partitions. Even though each data partition contains the same
number of records, the sizes of the compressed bitmap indices vary. This variance is due to the fact that the access patterns in the network



Figure 3: Network traffic data collected at NERSC.

Figure 4: Size of the compressed bitmap indices for 32 partitions. Each partition contains 22 bitmap indices (one per data attribute).

traffic varies. As we saw in Figure 3, there was an increase in network traffic intensity a few weeks before Supercomputing 2004. Since traffic
in that week is more homogenous than the traffic during the rest of the year, the bitmap indices compress better for that part of the data. We
observe that an even data partitioning strategy based on the number of records does not necessarily result in evenly sized indices.

5.2 Parallel Histogramming Performance

In our first set of experiments we evaluated a multi-dimensional query for producing 2D conditional histograms. This query is typical for
studying the hosts that were contacted over a certain period of time. The query we used for our performance benchmarks is as follows:

Histogram 1:
plot histogram DP:1000:11000:100,

tsyday:50:350:3
where (state == 1) and (12 <= tshour < 14)

This query looks for unsuccessful connections (state==1) within the time window of 12:00 and 14:00. DP:1000:11000:100 refers to
destination port in the range [1000;11,000) with a step size of 100. tsyday:50:350:3 refers to the time stamp given in days with the range
[50;350) and a step size of 3. As one can easily calculate from the ranges and the step sizes, the number of histogram bins for both attributes
is 100.

The time to evaluate the query with our four parallel algorithms is shown in Figure 5. The graph shows the performance of these four
algorithms with up to 32 PEs. This query selects about 28 million records out of 2.5 billion, corresponding to a selectivity of about 1%.
Algorithm RAQ shows the best performance on one PE. For two PEs and greater, algorithm FEP is the winner. Note that algorithms BAQ,
LAQ and RAQ operate on the contiguous data set whereas algorithm FEP operates on the partitioned data set.

Let us now analyze algorithm FEP in more detail. We can see that it shows nearly linear scalability. One of the reasons for not observing
optimal scalability for algorithm FEP is that the sizes of the compressed bitmap indices for each data partition vary – the bitmap compression
algorithm performance is strongly correlated with the data distribution statistics [Wu et al. 2004]. Since the network access patterns change
over time, we expect that some parts of the data compress better than others as can be seen in Figure 4.



Figure 5: Processing time for conditional 2D histogram over 2.5 billion records with up to 32 PEs. The query condition is (state == 1) and
(12 ≤ tshour < 14). Note the log-scale on both the x and y axes.

Next, we varied the query condition to study the impact of the number of result records on the performance of the algorithms. In particular,
we varied the time window of the query in the following way:

Histogram 2:
plot histogram DP:1000:11000:100,

tsyday:50:350:3
where (state == 1) and (13 <= tshour < 14)

Histogram 3:
plot histogram DP:1000:11000:100,

tsyday:50:350:3
where (state == 1) and (11 <= tshour < 15)

The number of result records for Histogram 2 is 12.6 million (which is half of the number of result records of Histogram 1). The number
of result records for Histogram 3 is 54.6 million (double the size of the result records of Histogram 1). The performance for building these
conditional histograms is shown in Figure 6. Since algorithm BAQ turned out to have the worst performance across all experiments, we only
plot the results for algorithms LAQ, RAQ and FEP. We can observe that the absolute run time of the algorithms changes slightly with the
number of result records. However, the relative performance of the three algorithms stays the same. Again, algorithm FEP is the overall
winner.

To determine if FEP’s “tail off” in parallel performance with increasing numbers of PEs is due to I/O limits, we next conduct an experiment
comparing FEP with a sequential data scan. If the sequential scan becomes I/O bound, its relative performance improvement will also begin
to degrade with increasing parallelism. The performance results of the sequential scan and FEP are shown in Figure 7. For the sequential
scan, we read the four attributes that are contained in Histogram 1, namely DP, tsyday, tshour and state. Each attribute is stored in a separate
file with 32 equally sized partitions. We observe that the parallel sequential scan performance indeed scales linearly, but algorithm FEP shows
a slight decrease in performance improvement with increasing parallelism. This result indicates that the sequential scan has not become I/O
limited at 32-way parallelism since its relative performance improvement does not degrade. We conclude that FEP, which is performing
less I/O than a sequential scan, is not I/O bound at this level of parallelism on our experiment’s computing platform. We see that the query
response time of algorithm FEP is, on average, a factor of 10 faster than the sequential scan.

Finally, we compared the performance of algorithm FEP with ROOT (developed at CERN) and ROOT-FastBit [Stockinger et al. 2006]. We
have chosen ROOT since it is currently one of the most powerful database systems used in production for scientific data management analysis.
For instance, that Babar [Experiment 2006] experiment at the Stanford Linear Accelerator Center stores nearly up to one Petabyte of data
in ROOT. Recently we also integrated FastBit into ROOT so that we can perform a direct comparison of the conditional histogramming
capabilities.

Figure 8 shows the performance of two different kinds of histogramming algorithms in ROOT. One uses ROOT’s internal projection indices
[O’Neil and Quass 1997], the other one uses FastBit indices. We observe that ROOT has nearly optimal scalability for up to 32 PEs in this
study. ROOT-FastBit and algorithm FEP both scale well up to 16 PEs with a marginal performance penalty for 32 PEs. However, algorithm
FEP is, on average, a factor of 3 faster than ROOT-FastBit.



(a) Result records: 12.6 million. (b) Result records: 54.6 million

Figure 6: Processing time for conditional 2D histogram over 2.5 billion records for up to 32 PEs with various numbers of result records. Note
the log-scale on both the x and y axes.

Figure 7: Processing time for conditional 2D histogram over 2.5 billion records for up to 32 PEs. Note the log-scale on both the x and y axes.

6 Network Connection Analysis Case Study
It is common for attackers to use sets of previously compromised hosts to collectively scan a target network. This form of attack, known as a
“distributed scan,” is typically accomplished by dividing the target address space up amongst a group of ‘zombie’ machines and directing each
zombie to each scan its portion of the target network. The term ‘zombie’ refers to a computer system that has been enslaved for the purpose
of carrying out some action, typically malicious. The scan results from each zombie are then aggregated at a master host thereby creating a
complete picture for the attacker. An example attack is a search for unsecured network services on a given port or port range. Identifying sets
of hostile hosts under common control is helpful in that the group of hosts can be blocked from access to critical infrastructure, and the group
can be reported to the larger community for further analysis or action.

The initial indication of a security incident typically comes from a source other than data mining, e.g. an email alert, an IDS alert, or a phone
call from a colleague at another institution. For example, we might receive an email indicating that a new vulnerability has been publicized,
affecting a network service that listens on a particular TCP port. We can then examine historical data to see if there is evidence of malicious
activity targeting this port – this activity could well be an indication of an attacker with pre-publication knowledge of the vulnerability.

In the discussion that follows, we implement a sequence of data mining steps aimed at detecting a distributed scan and identifying the set of
remote hosts participating in the scan. The target network is of “class B” size, meaning it contains 65536 unique IP addresses covering the
full range of [0;255] in both the C and D octets (the target network in this case is identified by its unique values in the A and B octets). We
use a custom visual analytics application that combines a GUI for constructing complex multi-dimensional queries, FastBit for answering the



Figure 8: Processing time for conditional 2D histogram over 2.5 billion records for up to 32 PEs. Note the log-scale on both the x and y axes.

queries, and OpenRM Scene Graph [R3vis 1999-2006] for performing visualization and rendering. In our analysis, we first determine the
temporal characteristics of the distributed scan, then identify the set of remote hosts participating in the scan.

6.1 Understanding Temporal Characteristics
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Figure 9: Unsuccessful connection attempts to port 5554 over a 42-week period are shown here in histogram form. While the source data is
sampled at per-second resolution, we created this histogram by posing a query requesting the number of connection attempts over a 24-hour
time window: each histogram bin is one day wide. We see “similar behavior” in the region around day 247, where “similar behavior” in this
case is characterized by the number of connection attempts. Each histogram bar is color-coded according to the number of standard deviations
from the mean. Green bars are “close to” the mean number of connections, while red bars indicate bins having count values that are about
three standard deviations from the mean number of counts.

Figure 9 is a histogram showing daily counts of unsuccessful incoming TCP connections directed at port 5554 over a 365 day period. The
data set contains 42 weeks of data – the “missing” 10 weeks are visible as a gap in the middle of the histogram. Note the large counts on days
247 and 290 visible as tall red spikes. Note also that around day 247 there is a consistent increase in daily activity, as evidenced by similar
levels of daily connection counts. The activity on day 290 appears different, since there appears to be a large increase in scanning activity –
possibly indicating a new scanning tool or technique. The activity surrounding day 247 appears at first glance to be careful work over time
by a set of hosts, whereas the day 290 is likely a single host scanning at a very high rate with the intent to ‘get in and get out’ before its
presence can be detected and its access blocked. Such high speed scans are quite common, and are often the reconnaissance phase of a larger
attack mechanism, or a combined scan and attack tool. We choose to focus on the 4-week period around day 247, where there is evidence of
temporally regular and systematic suspicious activity as shown in Figure 10. In contrast, Figure 11 shows a histogram of suspicious activity
sampled at one-hour intervals over a two-day period around day 290. The access patterns visible in Figure 10 are much different than those
in Figure 11.

Figure 10 shows the four-week period surrounding day 247 with finer granularity in time – this histogram shows connection counts at hourly
resolution. We can see that the activity is temporally periodic, with a period of approximately one day, repeating for twenty-one days. We
will therefore direct our analysis toward the activity over this 21-day period.

We drill into the data at a finer temporal resolution; by posing a query that requests counts of per-minute unsuccessful connection attempts
over a five-day period within the four-week window. The histogram, which is depicted in Figure 12, shows a distinct pattern of increased
activity on a precise 24-hour interval. This image shows a spike in activity occurring at about 21:15:00 local time each day. Each such
primary spike is followed by a secondary spike that occurs about 50 minutes later. Each of the top five spikes is labeled on the bottom of the
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Figure 10: This histogram shows the per-hour number of unsuccessful connection attempts over a four-week period around day 247.
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Figure 11: This histogram shows the per-hour number of unsuccessful connection attempts over a two-day period around day 290.

figure with the raw Unix timestamp and the number of connection attempts at that time.
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Figure 12: This histogram shows the number of unsuccessful connection attempts to port 5554 over a five-day period of time sampled over
one-minute temporal windows. The histogram indicates a repeating pattern of a spike in unsuccessful connection attempts that occurs on a
twenty-four hour interval. Each spike is followed by a secondary, smaller spike fifty minutes later.

At this point, we conclude that an organized scanning event is occurring daily at 21:15 local time within a four-week window of our 42-week
dataset. While there also appears to be a secondary event occurring about 50 minutes later within the same four-week period, for the rest
of this analysis we will focus only on the event occurring at 21:15 in order to simplify the method that we are presenting. We refer to the
seven-minute window during which the daily scanning event occurs as the “event horizon.”

So far, our analysis has focused on understanding the temporal characteristics of the attack. Next, we take a different approach in looking at
the coverage of the target network by the attack. As shown in Figure 13 we create a 3D histogram where two of the axes are the C and D octets
of the destination address space and the third axis is time. The range of the IPRC and IPRD axes is [0;255], which corresponds to the complete
range of addresses in the target network. The range of the time axis, labeled ts, is a two-hour period within the larger time window of interest
sampled at a one-minute granularity. The resulting histogram has 256 by 256 by 120 “bins” that contain the number of connection attempts
on port 5554 for each destination (C,D) address within a one-minute time window. Each point in Figure 13’s 3D scatterplot is color-coded by
the number of connection attempts at each destination address. Points in blue indicate a single connection attempt; points in green represent
two connection attempts and indicate an overlap in target address space amongst the attacking hosts. Outside of the “sheet-like” structures,
we see an occasional scan through a sequence of D octet values.

In Figure 13, we see coarse structures that approximate “sheets.” Each sheet represents a nearly complete scan of the target network, and each
corresponds to some pair of large spikes visible in Figure 12. Were we to broaden the time window in Figure 13 to include the entire time



range of Figure 12, we would see the “sheet” structure repeat over and over again. We focused on a specific two-hour window to look at the
fine-level time/address structure that might not be visible with a coarser temporal view. For the sake of completeness, Figure 14 shows a 1D
histogram over the same two-hour window sampled at one-minute intervals. The “spikes” in Figure 14 correspond to the temporal location
of the “sheet-like” structures in Figure 13.

Figure 13: Focusing on a two-hour window using a one-minute temporal resolution, we generate a histogram showing the number of con-
nection attempts across all (C,D) addresses of the target address space. Two of the axes are all addresses within each of the C and D octets
of the target address space. The third axis is time over a two-hour window sampled over one-minute windows. The “sheet-like” structures
correspond to a pair of temporally close spikes in Figure 12.
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Figure 14: A 1D histogram of connection attempts over a two-hour time period at a one-minute temporal resolution. The spikes in this image
correspond to the temporal location of the “sheets” visible in Figure 13.

Drilling into the data at a finer resolution, Figure 15 shows a histogram of unsuccessful connection attempts over a seven-minute window at
one-second temporal resolution. At this fine temporal resolution – the maximum possible with this particular dataset – we see the sharp spikes
in the one-minute resolution histogram from Figure 12 is a distribution that spans approximately two minutes from about 21:14 to 21:16 PST.

6.2 Discovering Attacking Host IP Addresses

The next step in the analysis is to determine the source addresses of the attacking hosts. We will use an iterative approach in which we first
identify the A octet of an attacking host’s address followed by the B, C and D octets.

We construct a complex multi-dimensional query that aims to answer the following question: over the event horizon, how many hosts for
each value in the A octet attempt to connect to all destination C octets during each scanning event? Each call to the 2D histogram query
function asks for the number of unsuccessful connection attempts from each source A octet to each destination C octet within a one-second
time window. We perform one such query for each of the 420 seconds within the event horizon. The results of these queries are presented in
Figure 16.

Figure 16 contains two different views of a 3D histogram along with a related 1D histogram. The 1D histogram shows the number of
unsuccessful connection attempts from all A octets for each daily event time horizon over the total event time horizon. In the 3D histogram
views, one axis is the destination C octet space, another is the source A octet space. Time in both views corresponds to the vertical axis
with earlier time being at the bottom of the histogram image. We draw several conclusions from Figure 16. First, it appears that most of
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Figure 15: By increasing the temporal resolution, we see in this histogram having per-second resolution over a seven-minute window, the
sharp spikes in previous images reflect activity that occurs over about a two-minute period.

the organized activity is originating from within three specific A octets. Interestingly, there are three highlighted spikes visible in the 1D
histogram of Figure 16 corresponding to high levels of suspicious traffic across all A-octet addresses. Second, we characterize “organized”
traffic in this image as a systematic progression through the destination C octet space over time. The top left panel of Figure 16 clearly shows
slanted line segments where the destination C octet changes as a function of time. Based upon these images as well as other output from the
visual analytics application (not shown here), we conclude that most of the attacking traffic originates from the A octet 220, but there are also
significant levels of traffic from the A octets 60, 61, 211, 218, 221 and 222 that exhibit correlating characteristics, namely time and duration
of activity.
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Figure 16: The top two panels are different views of the same 3D histogram showing the number of connection attempts to destination C
octets from source A octets over a seven-minute window at a one-second granularity for a periodic event occurring on 9/9/04. “Organized”
behavior is visible in the top left panel as line segments that systematically probe destination C octets. The start of the scanning event is visible
as the sudden increase in activity in the bottom one-third of the top-left image. The bottom 1D histogram shows the number of connection
attempts from all source A octets regardless of the destination C octet.

We next perform an iterative sequence of steps that converge on completely identifying the full address of all attacking hosts. Whereas the
query producing the data for Figure 16 aims to identify the source A octets, the next three steps in the analysis each identify the B, C and D
octets of the complete IP address of all attacking hosts. Each step uses information from the previous step so that by the time we mine data
for the source D octets, we are using results from previous steps that identified the A, B, and C octets. At the end of these steps, we identified
a total of twenty IP addresses that appear to be part of a distributed scan.

Using those twenty IP addresses, we next compute a “coverage map” showing the destination C and D octets for each zombie host. The result
is Figure 17.

7 Conclusions
This paper emphasizes the importance of a multi-disciplinary approach in large-scale analytics. By combining state-of-the-art scientific data
management technology – efficient compressed bitmap indices – with simple yet effective visualization in a visual analytics and data mining
application, we demonstrate using the combination to detect distributed scans in 42-weeks worth of network connection data. Since the visual
analytics application focuses on generating and displaying multi-dimensional conditional histograms, this paper includes a discussion of the
performance characteristics of a new family of algorithms for quickly producing one- and two-dimensional histograms from bitmap indices.



Figure 17: Here we see the destination C and D octets contacted by each of the twenty hosts participating in the distributed network scan in
one of the periodic scanning events.

While the context of our presentation is on a cybersecurity application, the techniques and technology are sufficiently general to be applicable
to a wide range of data analysis and mining topics in science, engineering, medicine, business and security.
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